A Qualitative Study of the Damped Duffing Equation and Applications1
نویسندگان
چکیده
In this paper, we analyze the damped Duffing equation by means of qualitative theory of planar systems. Under certain parametric choices, the global structure in the Poincaré phase plane of an equivalent two-dimensional autonomous system is plotted. Exact solutions are obtained by using the Lie symmetry and the coordinate transformation method, respectively. Applications of the second approach to some nonlinear evolution equations such as the twodimensional dissipative Klein-Gordon equation are illustrated.
منابع مشابه
Efficient Solution of Nonlinear Duffing Oscillator
In this paper, the efficient multi-step differential transform method (EMsDTM) is applied to get the accurate approximate solutions for strongly nonlinear duffing oscillator. The main improvement of EMsDTM which is to reduce the number of arithmetic operations, is thoroughly investigated and compared with the classic multi-step differential transform method (MsDTM). To illustrate the applicabil...
متن کاملNonresonant Excitation of the Forced Duffing Equation
We investigate the hard nonresonant excitation of the forced Duffing equation with a positive damping parameter E. Using the symbolic manipulation system MACSYMA, a computer algebra system. we derive the two term perturbation expansion by the method of multiple time scales. The resulting approximate solution is valid for small values of the coefficient e As the damping parameter e increases, th...
متن کاملPeriodic Solutions of Damped Duffing-type Equations with Singularity
We consider a second order equation of Duffing type. By applying Mawhin’s continuation theorem and a relationship between the periodic and the Dirichlet boundary value problems for second order ordinary differential equations, we prove that the given equation has at least one positive periodic solution when the singular forces exhibits certain some strong force condition near the origin and wit...
متن کاملAnalytical Solution for the Forced Vibrations of a Nano-Resonator with Cubic Nonlinearities Using Homotopy Analysis Method
Many of nonlinear systems in the field of engineering such as nano-resonator and atomic force microscope can be modeled based on Duffing equation. Analytical frequency response of this system helps us analyze different interesting nonlinear behaviors appearing in its response due to its rich dynamics. In this paper, the general form of Duffing equation with cubic nonlinearity as well as par...
متن کاملSome New Analytical Techniques for Duffing Oscillator with Very Strong Nonlinearity
The current paper focuses on some analytical techniques to solve the non-linear Duffing oscillator with large nonlinearity. Four different methods have been applied for solution of the equation of motion; the variational iteration method, He’s parameter expanding method, parameterized perturbation method, and the homotopy perturbation method. The results reveal that approxim...
متن کامل